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The effectiveness of gas-film cooling in the presence of a turbulent
air flow in an adiabatic circular tube with an initial porous section is
discussed in relation to the experimental results,

The results of an experimental investigation of gas-
film cooling effectiveness in a turbulent air flow through
a circular tube with adiabatic walls were reported in
[1]. The empirical relations proposed differed from
the known formulas of Kutateladze and Leont'ev [2],
Goldstein et al. [3], and Nishiwaki et al. [4] for a gas
film on a plate in a longitudinal flow.

In the range of injection parameters that we inves-
tigated, application of the Kutateladze-Leont'ev theory
to the gas film in a tube leads to the following relation:
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When analyzed in accordance with the usualformula
6 = AK/mi)~ 08, the experimental data give the relations
presented in Table 1.

As may be seen from Table 1, the correlation of all
the data in a single formula requires an additional pa-
rameter. Goldstein [3] proposed that the data be cor-
related by a relation having the form
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Here, A, p, and n are constants, and Regx = Uaé*/v is
the Reynolds number based on the displacement thick~
ness.

However, an analysis of our data revealed consid-
erable stratification with respect to the injection
parameter m. The discrepancybetween the data of vari-
ous investigators on film effectiveness is usually

Table 1

Relations for the Effectiveness of a Gas Film
in a Circular Tube
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attributed to differences in the hydrodynamic and ther-
mal conditions immediately beyond the secondary-gas
injection point. According to Kutateladze and Leont'ev
[2], the film effectiveness can be represented in the
generalized form
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B = 6:*/6** is treated as anintegral characteristic of
the hydrodynamic conditions and the thermal state of
the flow; Ref* = Ua68*/v and Re™* = Uaé**/v are the
Reynolds nun%bers ba%ed on the energy thickness atthe
outlet from the porous section and the momentum
thickness in the given section, respectively.

Our measurements in a circular tube with an initial
porous section enabled us to calculate 6%, 6%*, 6§,
and B for various Regq, m, X, I. It was found that the
dynamic characteristics 6*, §** start by increasing
with increase in Xy, reach a maximum at X; = 1-2,
and then gradually fall to a value determined by the
power-law velocity profile of the steady-state turbu-
lent flow in the circular tube. The energy thickness
6;‘* increases with X, reaching a limiting value in the
section where complete adiabatic mixing of the flows
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Fig. 1. The parametel;_ﬁ as a function of the di~

mensionless distance X and the injection param-

eter at I/d = 5.2: 1) m = 1.8- 103, Req = 41.7-

4 103; 2) 10.06° 1073 and 41.7-1073; 3) 21.13-1073
and 15,3 10% 4) 43.84 - 1073 and 9.4 - 10°.
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ends. At the outlet from the porous section, the quan-
tities 8%, &**, §p**, and B increase with increase in the
injection parameter. However, the dependence of these
quantities on m, X, I cannot be generalized by any
simple function capable of serving as a correlation
formula relating the effectiveness with the experimen-
tal parameters in the range of variation investigated.
In Fig. 1, B is shown as a function of X and m at [/d =
= 5.2. The increase is sharpest up to the section X; =
= 10; the effect of the injection parameter m declines
as Xjincreases. In our opinion, the best correlationof
the experimental data is offered by a formula of the

type
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The quantity 8, is calculated from the corresponding
values of T and U in the section at the outlet from the
porous region, while the exponent p depends on m, I,
and X:

5a=4.17(7)' m . (6)

Figure 2 is convincing evidence of the suitability of
formulas (5) and (6). The empirical relations obtained
for porous sections of different lengths are presented
in Table 2.
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Fig. 2. Effectiveness of gas film at I/d = 5.2 as
a function of APX/mi: 1) m = 44.83-107%, Reqg =
=10.2-10% 2) 81.17-107% and 15.3-10% 3)19.44 -
1073 and 24.1-10% 4) 14.54- 1073 and 36.2- 10%
5) 10.6- 1073 and 41.7- 10% 6) 8.743-10~% and
41.7-10% 7) 1.951-10"3 and 41.7-10%.
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Table 2

Relations for the Effectiveness of a Gas Film
in a Circular Tube Obtained on the Basis of the
Experimental Data
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NOTATION

6 = (Ty — TY3)/(Ty — Typ) is the effectiveness of
the gas film; X is the longitudinal coordinate from the
beginning of the porous section, m; X = X/d; lis the
length of the porous section, m; m = pygVi/ P U, isthe

R
injection parameter; &% =j (1 - pU;/p,Ua)(1 — y/R)AR
a

R

is the displacement thickness, m; 5** =f (1 — Uj/Uy) x
a

x pU;/paUa(l ~ y/R)AR is the momentum thickness, m;

R
6;;‘:* :\Y[l - (Ta - T]_)/(Ta - Tw)]p]_Ui/ana_(l - Y/R)dR

a
is the energy thickness, m; ﬁa is the mean-mass velocity
at the inlet to the porous section, m/sec; Uy is the ve-
locity on the channel axis, m/sec; X; is the dimension-
less distance from the beginning of the impermeable
wall; 6;‘; is the energy thickness at the outlet from the
porous section. Subscripts: w refers to parameters at
the wall; a, to parameters on the axis; i, toparameters
at a given point of the cross section; ad represents
adiabatie; in represents secondary flow.
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